翻訳と辞書
Words near each other
・ Jankielówka
・ Janklow
・ Janko
・ Janko Alexy
・ Janko Bobetko
・ Janko Božović
・ Janko Brašić
・ Janko Drašković
・ Janko Gagić
・ Janko Gojković
・ Janko Gredelj
・ Janko group
・ Janko group J1
・ Janko group J2
・ Janko group J3
Janko group J4
・ Janko Janković
・ Janko Jesenský
・ Janko Kamauf
・ Janko Kastelic
・ Janko Katić
・ Janko Kersnik
・ Janko Konstantinov
・ Janko Kos
・ Janko Kroner
・ Janko Kráľ
・ Janko Lavrin
・ Janko Leskovar
・ Janko Matúška
・ Janko Mitrović


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Janko group J4 : ウィキペディア英語版
Janko group J4

In the area of modern algebra known as group theory, the Janko group ''J4'' is a sporadic simple group of order
:   22133571132329313743
: = 86775571046077562880
: ≈ 9.
==History==
''J4'' is one of the 26 Sporadic groups. Zvonimir Janko found J4 in 1975 by studying groups with an involution centralizer of the form 21 + 12.3.(M22:2). Its existence and uniqueness was shown using computer calculations by Simon P. Norton and others in 1980. It has a modular representation of dimension 112 over the finite field with 2 elements and is the stabilizer of a certain 4995 dimensional subspace of the exterior square, a fact which Norton used to construct it, and which is the easiest way to deal with it computationally. and gave computer-free proofs of uniqueness. and gave a computer-free proof of existence by constructing it as an amalgams of groups 210:SL5(2) and (210:24:A8):2 over a group 210:24:A8.
The Schur multiplier and the outer automorphism group are both trivial.
Since 37 and 43 are not supersingular primes, ''J4'' cannot be a subquotient of the monster group. Thus it is one of the 6 sporadic groups called the pariahs.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Janko group J4」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.